metabelian, supersoluble, monomial
Aliases: C62.13D6, C62.(C2xC6), (D4xHe3):4C2, C12.16(S3xC6), He3:9(C4oD4), C12.D6:C3, He3:6D4:6C2, He3:3Q8:8C2, (C3xC12).25D6, (D4xC32):3C6, (D4xC32):4S3, C32:7D4:2C6, C32:4Q8:3C6, D4:2(C32:C6), C32:5(D4:2S3), (C4xHe3).21C22, (C2xHe3).24C23, C32:C12.12C22, (C22xHe3).13C22, (C4xC3:S3):2C6, C6.34(S3xC2xC6), (C4xC32:C6):6C2, (C2xC6).11(S3xC6), (C3xC12).5(C2xC6), (C2xC3:Dic3):3C6, C32:2(C3xC4oD4), C4.5(C2xC32:C6), (C2xC32:C12):9C2, (C3xD4).10(C3xS3), C3.2(C3xD4:2S3), C3:Dic3.3(C2xC6), (C3xC6).6(C22xC6), (C3xC6).28(C22xS3), C22.1(C2xC32:C6), C2.7(C22xC32:C6), (C2xC32:C6).11C22, (C2xC3:S3).2(C2xC6), SmallGroup(432,361)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C62.13D6
G = < a,b,c,d | a6=b6=1, c6=d2=b3, ab=ba, cac-1=ab-1, dad-1=ab2, bc=cb, dbd-1=b-1, dcd-1=c5 >
Subgroups: 645 in 156 conjugacy classes, 52 normal (30 characteristic)
C1, C2, C2, C3, C3, C4, C4, C22, C22, S3, C6, C6, C2xC4, D4, D4, Q8, C32, C32, Dic3, C12, C12, D6, C2xC6, C2xC6, C4oD4, C3xS3, C3:S3, C3xC6, C3xC6, Dic6, C4xS3, C2xDic3, C3:D4, C2xC12, C3xD4, C3xD4, C3xQ8, He3, C3xDic3, C3:Dic3, C3:Dic3, C3xC12, C3xC12, S3xC6, C2xC3:S3, C62, C62, D4:2S3, C3xC4oD4, C32:C6, C2xHe3, C2xHe3, C3xDic6, S3xC12, C6xDic3, C3xC3:D4, C32:4Q8, C4xC3:S3, C2xC3:Dic3, C32:7D4, D4xC32, D4xC32, C32:C12, C32:C12, C4xHe3, C2xC32:C6, C22xHe3, C3xD4:2S3, C12.D6, He3:3Q8, C4xC32:C6, C2xC32:C12, He3:6D4, D4xHe3, C62.13D6
Quotients: C1, C2, C3, C22, S3, C6, C23, D6, C2xC6, C4oD4, C3xS3, C22xS3, C22xC6, S3xC6, D4:2S3, C3xC4oD4, C32:C6, S3xC2xC6, C2xC32:C6, C3xD4:2S3, C22xC32:C6, C62.13D6
(1 50 31 4 59 34)(2 53 28 3 56 25)(5 60 33 8 57 36)(6 51 30 7 54 27)(9 43 65 12 40 68)(10 46 62 11 37 71)(13 47 61 16 44 64)(14 38 70 15 41 67)(17 45 63 20 42 66)(18 48 72 19 39 69)(21 49 32 22 52 29)(23 55 26 24 58 35)
(1 5 24 3 7 22)(2 6 21 4 8 23)(9 15 19 11 13 17)(10 16 20 12 14 18)(25 27 29 31 33 35)(26 28 30 32 34 36)(37 47 45 43 41 39)(38 48 46 44 42 40)(49 59 57 55 53 51)(50 60 58 56 54 52)(61 63 65 67 69 71)(62 64 66 68 70 72)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)
(1 13 3 15)(2 14 4 16)(5 11 7 9)(6 12 8 10)(17 24 19 22)(18 21 20 23)(25 63 31 69)(26 68 32 62)(27 61 33 67)(28 66 34 72)(29 71 35 65)(30 64 36 70)(37 50 43 56)(38 55 44 49)(39 60 45 54)(40 53 46 59)(41 58 47 52)(42 51 48 57)
G:=sub<Sym(72)| (1,50,31,4,59,34)(2,53,28,3,56,25)(5,60,33,8,57,36)(6,51,30,7,54,27)(9,43,65,12,40,68)(10,46,62,11,37,71)(13,47,61,16,44,64)(14,38,70,15,41,67)(17,45,63,20,42,66)(18,48,72,19,39,69)(21,49,32,22,52,29)(23,55,26,24,58,35), (1,5,24,3,7,22)(2,6,21,4,8,23)(9,15,19,11,13,17)(10,16,20,12,14,18)(25,27,29,31,33,35)(26,28,30,32,34,36)(37,47,45,43,41,39)(38,48,46,44,42,40)(49,59,57,55,53,51)(50,60,58,56,54,52)(61,63,65,67,69,71)(62,64,66,68,70,72), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72), (1,13,3,15)(2,14,4,16)(5,11,7,9)(6,12,8,10)(17,24,19,22)(18,21,20,23)(25,63,31,69)(26,68,32,62)(27,61,33,67)(28,66,34,72)(29,71,35,65)(30,64,36,70)(37,50,43,56)(38,55,44,49)(39,60,45,54)(40,53,46,59)(41,58,47,52)(42,51,48,57)>;
G:=Group( (1,50,31,4,59,34)(2,53,28,3,56,25)(5,60,33,8,57,36)(6,51,30,7,54,27)(9,43,65,12,40,68)(10,46,62,11,37,71)(13,47,61,16,44,64)(14,38,70,15,41,67)(17,45,63,20,42,66)(18,48,72,19,39,69)(21,49,32,22,52,29)(23,55,26,24,58,35), (1,5,24,3,7,22)(2,6,21,4,8,23)(9,15,19,11,13,17)(10,16,20,12,14,18)(25,27,29,31,33,35)(26,28,30,32,34,36)(37,47,45,43,41,39)(38,48,46,44,42,40)(49,59,57,55,53,51)(50,60,58,56,54,52)(61,63,65,67,69,71)(62,64,66,68,70,72), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72), (1,13,3,15)(2,14,4,16)(5,11,7,9)(6,12,8,10)(17,24,19,22)(18,21,20,23)(25,63,31,69)(26,68,32,62)(27,61,33,67)(28,66,34,72)(29,71,35,65)(30,64,36,70)(37,50,43,56)(38,55,44,49)(39,60,45,54)(40,53,46,59)(41,58,47,52)(42,51,48,57) );
G=PermutationGroup([[(1,50,31,4,59,34),(2,53,28,3,56,25),(5,60,33,8,57,36),(6,51,30,7,54,27),(9,43,65,12,40,68),(10,46,62,11,37,71),(13,47,61,16,44,64),(14,38,70,15,41,67),(17,45,63,20,42,66),(18,48,72,19,39,69),(21,49,32,22,52,29),(23,55,26,24,58,35)], [(1,5,24,3,7,22),(2,6,21,4,8,23),(9,15,19,11,13,17),(10,16,20,12,14,18),(25,27,29,31,33,35),(26,28,30,32,34,36),(37,47,45,43,41,39),(38,48,46,44,42,40),(49,59,57,55,53,51),(50,60,58,56,54,52),(61,63,65,67,69,71),(62,64,66,68,70,72)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72)], [(1,13,3,15),(2,14,4,16),(5,11,7,9),(6,12,8,10),(17,24,19,22),(18,21,20,23),(25,63,31,69),(26,68,32,62),(27,61,33,67),(28,66,34,72),(29,71,35,65),(30,64,36,70),(37,50,43,56),(38,55,44,49),(39,60,45,54),(40,53,46,59),(41,58,47,52),(42,51,48,57)]])
50 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 3A | 3B | 3C | 3D | 3E | 3F | 4A | 4B | 4C | 4D | 4E | 6A | 6B | 6C | 6D | 6E | 6F | ··· | 6L | 6M | ··· | 6R | 6S | 6T | 12A | 12B | 12C | 12D | 12E | 12F | 12G | 12H | 12I | 12J | 12K | 12L | 12M | 12N |
order | 1 | 2 | 2 | 2 | 2 | 3 | 3 | 3 | 3 | 3 | 3 | 4 | 4 | 4 | 4 | 4 | 6 | 6 | 6 | 6 | 6 | 6 | ··· | 6 | 6 | ··· | 6 | 6 | 6 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 |
size | 1 | 1 | 2 | 2 | 18 | 2 | 3 | 3 | 6 | 6 | 6 | 2 | 9 | 9 | 18 | 18 | 2 | 3 | 3 | 4 | 4 | 6 | ··· | 6 | 12 | ··· | 12 | 18 | 18 | 4 | 6 | 6 | 9 | 9 | 9 | 9 | 12 | 12 | 12 | 18 | 18 | 18 | 18 |
50 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 12 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 6 | 6 | 6 |
type | + | + | + | + | + | + | - | + | + | + | - | + | + | + | ||||||||||||
image | C1 | C2 | C2 | C2 | C2 | C2 | C3 | C6 | C6 | C6 | C6 | C6 | C62.13D6 | S3 | D6 | D6 | C4oD4 | C3xS3 | S3xC6 | S3xC6 | C3xC4oD4 | D4:2S3 | C3xD4:2S3 | C32:C6 | C2xC32:C6 | C2xC32:C6 |
kernel | C62.13D6 | He3:3Q8 | C4xC32:C6 | C2xC32:C12 | He3:6D4 | D4xHe3 | C12.D6 | C32:4Q8 | C4xC3:S3 | C2xC3:Dic3 | C32:7D4 | D4xC32 | C1 | D4xC32 | C3xC12 | C62 | He3 | C3xD4 | C12 | C2xC6 | C32 | C32 | C3 | D4 | C4 | C22 |
# reps | 1 | 1 | 1 | 2 | 2 | 1 | 2 | 2 | 2 | 4 | 4 | 2 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 4 | 4 | 1 | 2 | 1 | 1 | 2 |
Matrix representation of C62.13D6 ►in GL10(F13)
0 | 0 | 10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 10 | 0 | 0 | 0 | 0 | 0 | 0 |
10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 12 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 12 |
0 | 0 | 0 | 0 | 12 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 12 | 0 | 0 |
12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 12 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 12 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 12 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 12 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 12 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 8 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 10 | 10 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 7 | 3 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 10 | 6 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 3 | 3 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 6 | 10 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 7 |
G:=sub<GL(10,GF(13))| [0,0,10,0,0,0,0,0,0,0,0,0,0,10,0,0,0,0,0,0,10,0,0,0,0,0,0,0,0,0,0,10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,0,0,12,0,0,0,0,12,0,0,0,0,0,0,0,0,0,0,12,0,0,0,0],[12,0,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,12,12,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,12,12,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,12,12],[0,0,0,1,0,0,0,0,0,0,0,0,12,1,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,1,12,0,0,0,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,12,0],[0,8,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,0,0,0,10,7,0,0,0,0,0,0,0,0,10,3,0,0,0,0,0,0,0,0,0,0,10,3,0,0,0,0,0,0,0,0,6,3,0,0,0,0,0,0,0,0,0,0,6,3,0,0,0,0,0,0,0,0,10,7] >;
C62.13D6 in GAP, Magma, Sage, TeX
C_6^2._{13}D_6
% in TeX
G:=Group("C6^2.13D6");
// GroupNames label
G:=SmallGroup(432,361);
// by ID
G=gap.SmallGroup(432,361);
# by ID
G:=PCGroup([7,-2,-2,-2,-3,-2,-3,-3,176,590,303,4037,1034,14118]);
// Polycyclic
G:=Group<a,b,c,d|a^6=b^6=1,c^6=d^2=b^3,a*b=b*a,c*a*c^-1=a*b^-1,d*a*d^-1=a*b^2,b*c=c*b,d*b*d^-1=b^-1,d*c*d^-1=c^5>;
// generators/relations